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Plane plastic flow of a rigid-plastic body is analyzed. As a coordinate
system the flow lines and the curves orthogonal fto them are selected. The
analogues of the Hencky integrals taken along these lines are presented.
The compatibility equation of the stress and the velocity fields is de-
rived, and a method of obtaining various solutions corresponding to the
assumed flow fields which follows from this equation is indicated. The
relationship between the compatibility equation and the extremal proper-
ties of a true velocity field is studied, together with certain velocity
classes for which the flow lines coincide with the slip lines and the
trajectories of principal stresses.

1. The plane plastic flow of a rigid-plastic body is described, as is
well known [1,2 1, by the following equations:'

x _?\1;__0 ar:cy__{,_?_sgz
oz dx oy

a9y
(0 — 6 - 47%y = 4K (1.1)
6vx 8 0, 21:xy . 67;“ [0z - 0v_ | Oy
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Let the equations for the flow lines and the orthogonal curves be
¢ = ¢, (¢, y) = const, ¢, = ¢, (z, y) = const (1.2)

In curvilinear orthogonal coordinates q;, ¢, (1.1) has the following
form (e.g. [3 ])'

GH,
(Hz w F o 0(1 (H,0,5) + "“*——3{]; Oy = 0
7] oH aH.
(f,—ql‘(H‘zUm) + (3(12( 1052) + 55— a0 >0y — 6q21 oy =0 (1.3)
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(011 — 09)% + 40y,% = 4&°
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where o ;. are stress components in the given coordinate system; k is the
limiting shear stress; £, . are deformation velocity [ strain rate ] com-
ponents; f, and H, are Lamé's constants.

The deformation velocity in the g;, g, system satisfies

1 ov 1 6[{2 Hy o v

l§11 = H aql § HH2 aq v, §12 :—fl—z 9¢2 'E' (1‘4)

where v is the modulus of the velocity vector. Introduce now new vari-

ables
1 .
o= —2—(011 -+ 022), z;} =04 kcos28, o,=Fksin2B (1.5)

where 8 is an angle formed by the velocity vector and the direction of
the larger principal stress. Thus (1.3), taking into account (1.4) and
(1.5), can be written as

%'*‘k 0c§;12B+ 2ksji;122(3 62];21 + kZi 65(;222B+ 2kcosZB %I;Iz (1.6)
aqz + IZJFBS;I;I% . 2kc}o{sl2[3 c’% 600528+ 2ksm ZB %1;112: (1.7)
v = %({921) (1.8)
0 26 = 5577 o gy 10 i = (1:9)

Here f(g,) is some function of its argument. The Lamé equation
LB EEE-

should supplement Equations (1.6) to (1.9).

2. We shall derive now the analogues of Hencky’s integrals for the
equations along the flow lines and the curves orthogonal to them

2kFy OH kH, OF 2kF, OH.
o +hoos2p = — (RGN BG4 BRI g0 L (e (24)

2kFy OH kH, oF 2kFy 0H
0—k00326=g-17115q—:—-}1—12“0—qll——]1_11_‘2‘) q: +T(q1) (22)
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Here F, = sin 28, F, = cos 23 and are determined by (1.9); 5(qy),
y(q;) are some functions.

We shall assume in the sequel that the derivatives of the functions

in the above equations exist and are continuous. Eliminating by differ-
entiating the function ¢ from (1.6} and (1.7), we obtain

&20052B+asin213" 2 _é’_fﬁ+ a H1>wasin2{3’ é H, + 2 6H2)+

2 , e — e o e = 2
aq1 dq2 dqs \ Hy 99 dqy \ oy Hy H, 9q;

0q92 H

dcos2B 1 0H, 2 8H,dcos28 H; 9%*sin 28
+ dyy  Hy Ogy + Hy dqq 9 + H, 0gq®

H, 8sin 28 . 8 /1 8H,
Hy  oq + 4sin 23 Oga (Hz dgs )+
o /1 0, LA
2005 [ (o 5, ) o i ()] = © @3)
or, considering (1.9)
aF OdF oF 2 aH g H oK
4F? —2) 25 07 1 Fe {_—(—a_.i SCAECIR T
( ) dq1 Ogz + (1 ) dgs \ Hy 0qa + g2 Hz> 9q1 0q2
_OF (0 Hy | ~%§Hj>wﬁfﬂﬂ_£ﬁf‘.?ﬂ+
dq1 \ 0q1 H; Hy aq1 Hy dqa aqy Hy 6q1 dys
H, &%F _ Hy, @F oF \t Hy (as«" 2 Hz} |
+ Hy g H, 5%2] 3 M 0q2> H, 51]1) Hy +
a 1 oH o /7 2 0H 0 2 oH
1 F22r F——~<—————1—> —{ sk ~,-——<——--—1—}z(} 4
+( + ) Lé 6112 Hz 86}2 + aqg (Hg 6q1 )+ dQ'l H1 8q2> (2 )

Function F in (2.3) and (2.4) is determined from (1.9); moreover

dsin 28 1 oF 300325: _ F ﬂ
aq, (14 Fy' 9g;° dq; (1 4+ F2)* 0y,
Psin2B 1 F o api OF \2 =12
og? “(Wﬂ)"z[aqiz @+ SFU%” i i)
Pcos2B 1 sy OF OF _ poa oy FF
e | QP D G — P P gl 29

Equation (2.4) is the third-order equation relative to #,, H, and
f (g,), and it represents the compatibility equation for the stress and
velocity fields. This can be formulated in the following theorem:

Theorem. A necessary and sufficient condition for a flow-line field,
which is determined by the Lamé constants, having continuous derivatives
up to third order, to be a true flow-line field is that there exists
such a function f(qz) which after the substitution of H; and H, into
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(2.4) satisfies the compatibility equation identically.

Note that for dH,/dq; = 0 the compatibility equation in the form
(2.3) reduces, in view of (1.9) and (1.10), to an identity. In the case,
however, when we have simultaneously

3H, a HH, .
= O, — il et O
9q1 dg2 /g9

the components of the velocity vector are identically zero.

For the true flow-line field (2.4) is generally an equation of the
third order with respect to f(g,). The order of this equation may be re-
duced to the second. This fact permits the solution corresponding to the
given flow-line field to be found in the following way. The function F
is determined from (1.9), it is then substituted into (2.4), from which,
in turn, we find f(q,), provided that the conditions of the theorem are
satisfied. Next, tan 28 is found from (1.8) and (1.9). Finally ¢ is found
from (2.1) and (2.2).

Ezample. Consider curvilinear orthogonal coordinates with the Lamé co-
efficients

Hy = cyexp (aq1 + bga), Hs = caexp (ag1 -+ bg2) (2.6)

where a, b and ¢; are constants., (2.8) represents two families of loga-
rithmic spirals. From (1.9) we obtain

g5 dlnf{gs)
tanZﬁ"‘F"cha [Zb——————-—-—-—dqz ] 2.7)

From (2.8) and (2.7) it follows that the compatibility equation is re-
duced to an ordinary differential equation for f(g,). Thus the conditions
of the above theorem are fulfilled and the compatibility equation accord-
ing to (2.3), (2.8) and (2.7) is

gflb_ dsin 28 n 2a dcos 28 o d?sin 2B

<y dQQ dq?, (23 dQ22 =0 (28)
or
. m dsin 28
bm sin 2B 4 acos 28 -+ T Tag = (2.9)
hence
- cos2BR dB ( 2%
93 = M “bm sin 28 — a cos 2B m_cz>
(2.10)
‘ maf3 o bm? ) acm
1= s T T (@ 1 b In (¢ — a cos 2B — bm sin 2B) + pEpo p+ Dy
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where ¢ and Di are constants:

( t 1o @)tanB —bm . pe 2
{I ]/cz-—aﬁ——b‘lm‘ltan V& —a b2 (% —a® = bm? > 0) (2.11)
— 1 (¢ + a)tanf3 — bm
p _ X rat
i ]/a2 + b2 2 Arth ]/a2 + bt — ¢t (a® 4 bm? — 2> 0)

Because of (1.6) and (2.6) the integral (2.1) taken along the flow
line is
0 -+ 2keqr = M (g2) (2.12)
Let us now calculate the integral (2.2) taken along the lines ortho-

gonal to the flow lines. In doing so we rewrite (2.2), taking into account
(1.7) and (2.9), in the following form:

2kbe kmb sin 2 2k (a? + b2m? .
o ———qz—kcos2p + 2 $+ ( am )gsm2ﬁdq2:\,(ql)

It follows from (2.10) that

2k (a® +02m?) { 2k (a? + b?m?) | cos 23 sin 28 d3
am S sin 2B dge = a B ¢ — bm sin 2B — a cos 28
Hence
2k (a® - t%m?) - L2m? 4kben k (a%c — b*m?3c) .
prn Ssm 2Bdgy=— 3 TomEB @ L o) In(c — bmsin 2 — a cos 2B)+
k 2km

+ - (acos 2p — bm sin 2B)+ (2bc? — a% — b3m?) p + Do

a? + b2m?

Thus along the line ¢; = const the following is satisfied:

2kbe 4kbcm k (a%c — b%cm?) .
S— Y P mo bt a (a* F o) In (¢ — bmsin 2B — acos 2B) +
2km
C @ b (2be? — b3m? — a?) p = vy (q1) (2.13)

From (2.12) and (2.13) it follows that

2kbe . Akbme k (a* — b%cm?) .
3= —2keqrt— gt T o p——; @ o) In (¢ — bm sin 2f — a cos 2B) —
2k
— (ﬁﬁiﬁ (2b¢2 —b3m? — a%) p+ Do (2.14)

where p is determined from (2.11).

From (1.9) it follows that
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2a

In f(ge2) = 2bg2 — &tan 2B dgs+ Ds

since
( . S sin 28 dB - am . oRy
‘39‘3% dgz=m Je—bmsin28 —acos 28~ 2(a% 4 b¥n?) In (¢ —bm sin 28 —a cos 26)
bm? bem

T a4 bt + a? L g P + Ds

therefore
a2
f(g2) = exp [2ng — & bt In{c—bmsin2p —acos 28) +
2abm 2abem .
=+ @+ BImEP gt - P -+ D&} (2.15)
and thus, according to (1.8)
a‘.’.
¥ = exp [qu - mln (¢ —bmsin 2B — a cos 2B) -
2abm 2abem
+a + PP — e — T o2 P + Ds] {2.16)

The relationships (2.10), (2.14) and (2.16) determine plastic flow
which corresponds to the flow lines in the form of logarithmic spirals
(2.16). Such a flow can be visualized in an extrusion of a plastic medium
through a channel, the walls of which are logarithmic spirals, and the
tangential stresses along these walls are constant.

If in the above relations we put a= a= 1, b= 0, then Nadai’s solu-
tion for the radial flow lines is obtained.

It is easy to verify that the conditions of the theorem are satisfied
by the following class of curvilinear coordinates:

Hi = @' (q,)¥ (g2), Hy= D (q) V¥’ (g) (2.17)

where ®(g,) and ¥(g,) are arbitrary functions having continuous deriva-
tives up to the third order. The non-admissible coordinates, for example,
are

H, = H, = H = c exp (2mgq,,) (e, m - - const) (2.18)

3. Let some flow-line field satisfy the conditions of the theorem.
Consider some plastic region o and given flow-line field in it. We shall
assume that along the contour of w the velocities are given by (1.8):

_1(g)

e

H,
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In this case, in view of the well-known theorem of extremal proper-
ties of a true velocity field [1 ], the function f(g,) must yield the
minimum of the functional

[ = '|/2‘k'\"]/"éauz + é £1s doo (3.1)

which, after integrating along ¢; and in view of (1.4) and (1.8), has
the form
Q=0

—V2k \ Qlaw /(g I o)) dao (3.2)

=0
with the usual transverse conditions

[Qilgma = L@ lgys= 0 (3.3)

where Q(f, f’, g,) is known. Thus for the determination of f(g,) a direct
method can be applied.

4. Consider the case when (9H2/0q1 = 0. In view of the known relation-
ships we have

da 1 0H, do 1 0[{2 oo

9s, M Il das Gsn  HiHs 8q1 ° E

= (. (4.1)

where @ is an angle formed by the tangent of the flow line with a vari-
able direction; aa/asi is the curvature of the coordinate lines. Con-
sequently, according to (4.1), the flow lines are equidistant curves. On
the other hand, it follows from (1.9) that 8= 0 = #/4, i.e. the flow
lines coincide with the slip lines. Clearly, the converse is also true.
Thus the necessary and sufficient condition for the coincidence of the
flow lines with slip lines is that the flow lines be equidistant curves;
clearly the motion of a medium as a rigid body is excluded.

5. Consider now the case when the flow lines coincide with the direc-
tions of the principal stresses. Since in this case 8= 0t /2, and be-
cause of (1.9), we have

o, HH,
B0 BTG 0 6:1)

On the other hand (1.6) and (1.7) have the following well-known form:

ds 2k O0H, ds 2k oHy
oq + Hy 0gy — 7 dg: Hi 9q, =0 (6-2)

or

o +2k1In Hy, = 1 (¢g2), 6 —2kln H, + v(q) (5.3)
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Hence in view of {5.1)

f;n (92) =1nf(gs) +¢ (¢ = const) (5.4)

Thus if the flow lines coincide with the trajectories of principal
stresses, then the following is true:

In HyH, = In f(g2) — 1 (q0) +ec (5.5)

Obviously, the converse is also true, i.e. (5.5) represents a neces-
sary and sufficient condition for the coincidence of the flow lines and
the trajectories of the principal stresses.

As an example consider an isometric net of the flow lines (or the
trajectories of the principal stresses). It follows from (1.10) and (5.5)
in this case that

[In f (g)]" = 41—-,‘ ' (@) =n {n = const) (5.6)

Therefore

Hy=H,=H —9XP[ ( 7t + €19y — “"-""Csfh +62)]

0 = k (ng.® + 2c19; + ngy® + 2c3q, +¢y) (¢; = const) (.7
v=exp(14’ +780 +50+ 50 +¢)
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